Aiuto, Mediana Triangolo congruente alla meta dell’Ipotenusa?

to safeguard

Answer 1

ABC triangolo rettangolo with AB ipotenusa assumed as base.
Relative median CM all’ipotenusa AB
CM ≅ AM ≅ CM
Conduction from A parallel AD to side BC and from B parallel DB to side AC
The ACBD parallelogram is a rectangle to be constructed: essendo infatti AC ⊥ BC for ipotesi, is anche
Nel rettangolo le diagonali si bisecano and sono congruent. Final result
Ma poiché M is the midpoint of AB by ipotesi and ed is AM ≅ MB
it’s wide
It is because dismostrato che
AM ≅ CM ≅ MB

answer 2

In practice, con la costruzione suggests getting a rettangolo.
And all the good colleghi C with D ottieni a uguale all’ipotenusa segment.
The ipotenusa is one of the diagonals, the most segmented.
E poached nel rettangolo the diagonali if dimezzano, diagonal mezza is the relative median all’ipotensa.

answer 3

kiami AM the median and follows the perpendicular segment of Mal lato AB (MH)
poichè MH is parallel to lato AC (sono entrembi perpendicolari ad AB) allora, applying the theorem: la parallela ad un lato di un triangolo condotta dal point average di un altro lato cade nel point average del terzo lato, ne deduci ke H è midpoint of AB
having MH altezza and median of the triangle ABM, this triangle is isosceles, therefore sarà AM=MB, dove MB is meta proper to ipotenusa

answer 4

Eccolo il problem coe il tuo con le soluzioni

Source(s): me

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *